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Abstract
In high-Tc superconductors dopant atoms supply holes or excess electrons.
Electric conduction happens in the neighbourhood of dopants within a circle
several lattice constants wide. Percolation of these conducting areas leads
to global conduction. Diffusing d-electrons in these areas can destroy
antiferromagnetism: the Néel temperatures decrease with doping. Based on an
Ising model with antiferromagnetic interactions acting in the part of the lattice
not covered by conducting areas, the specific heat, the staggered susceptibility
and the spin correlation lengths show very broad peaks even for low dopant
concentrations. In doped cuprates, due to the small size granularity comparable
with the sizes of our simulated systems, possible peak height singularities are
always suppressed.

PACS numbers: 07.05.Tp, 64.60.Fr, 64.60.Ak, 75.30.Hx

1. Introduction

Most of the pure parent materials of high-Tc superconductors are antiferromagnetic insulators.
Susceptibility measurements show peaks at the Néel temperatures [1]. Electric conduction is
established only by doping with, e.g., Sr in La2−xSrxCuO4 (LASCO), oxygen in YBa2Cu3O6+y

(YBCO) or Ce in Nd2CuO4. The Néel temperatures decrease by doping and spin-glass-like
states occur close to the magnetic percolation limit. Increasing doping transforms the system
from an insulator into an electric conductor.

When some atoms are exchanged by others with a different valency, holes or excess
electrons hop in regions delimited by a diameter d of several lattice constants a. By increasing
doping conductive areas concatenate together to form percolating and conducting clusters
[2–4]. The magnetic properties of these cuprates are very well understood [5], but there remain
some open questions. To elucidate these properties a simple picture based on percolation and
Ising antiferromagnetism has been used.

In two-dimensional N × N spin lattices n different sites are chosen at random [6]. Each
of these sites mark the origin of a circle with diameter d. If a new circle overlaps partially with
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Figure 1. cc = nc/N
2 as a function of d/a. The case d = a corresponds to site percolation on

a square lattice. The full circle with cc = pc = 0.593 is the theoretical value [11]. The dashed
line is evaluated by limd→0 n(�c)d

2/[(aN)2(d/a)2] = −4/π ln(1 − �c)/[(aN)2(d/a)2] for the
cover �c = 0.6766 of continuum percolation [13]. The cross at d/a ≈ 6 corresponds to the
concentration c = 0.04 = x at the insulator–conductor limit of La2−xSrxCuO4 [15].

older circles, they form a cluster. Cluster counting is accelerated by index registers [7, 8]. The
total increase of the cover � by the interposition of this new circle is made up of the sum of
polygons and segments of the new circle and the subtraction of the areas of the segments of the
older circles [9, 10]. All critical exponents β of the percolation order parameter are assumed
identical to β = 5/36, the value for the two-dimensional site percolation problem [11]. Both
(npcl/n)7 and (�pcl/�)7 (the index pcl means belonging to the percolation cluster) are nearly
linear functions of the circle concentration c = n/N2, respectively �, and can be fitted by
straight lines. When these lines cross the value zero, �c or cc are determined. In the case
of continuum percolation [12], for which the lattice constant a tends to zero and Na remains
finite, the critical cover �c = 0.677 ± 0.001 is in agreement with earlier results [13, 14].

For La2−xSrxCuO4 the centres of the percolating discs correspond to the projection of
the Sr atomic coordinates into the CuO plane. The net charge of the chemical unit cell after
the La–Sr exchange is reduced by one. The occurring hole is attracted away from the position
of the Sr atom by Coulomb forces. Because these forces are reduced by large dielectric
constants, the diameters d of the circles in which the holes hop are limited to several lattice
constants a.

2. Computer simulation results

We simulate the critical concentrations cc = nc/N
2 as a function of d/a (the circle diameter

d divided by the lattice constant a) for d/a � 1. For d = a two neighbouring circles touch
each other. As shown in figure 1, cc corresponds to the percolation threshold pc of site
percolation on a square lattice [11]. By increasing d/a, cc remains constant until d/a reaches
the value of

√
2, decreases by a jump and stays constant until the next jump. These abrupt

changes for cc occur when d correspond to the successive distance to the next neighbours and
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Figure 2. Snapshot of a 151 × 151 sites antiferromagnetic lattice covered with 532 nonmagnetic
spherical discs of a diameter d = 6.04 lattice constants a. The concentration of disc centres is
0.023. The largest cluster, designated by points, contains 101 73 or 97% of all magnetic sites. All
other cluster sites are designated by crosses.

resemble steps in a staircase. For large values of d/a and assuming that aN is a constant,
namely one, this function can be approached by n(�c)d

2/[(aN)2(d/a)2] = limd→0 −
4/π ln(1 − �c)/[(aN)2(d/a)2], where �c = 0.6766 is the critical cover of continuum
percolation [13].

In the structure of La2−xSrxCuO4 the Sr atoms closest to the copper–oxygen plane are
above or below this plane amid four copper atoms. The insulator–conductor transition occurs
at a Sr atom concentration c = x ≈ 0.04 [15]. The cross in figure 1 for this cc is placed
at the centre of the constant step line with d/a = 6.04. The conducting discs cover an area
of slightly more than 6 × 6 lattice units. Holes or excess electrons hoping in the clusters are
surrounded by diffusing d-electrons. Their spin direction is no longer localized on distinct
places: antiferromagnetism breaks down. In La2CuO4 the lattice of the La atoms is shifted
against the Cu lattice by (a/2, a/2,±zLa). Therefore, the centres of the conducting circles
are shifted against the underlying lattice by the same amount. A typical situation in a
151 × 151 site spin-system is plotted in figure 2. The antiferromagnetic lattice (dots) is
covered with 532 nonmagnetic white spherical discs of diameters d = 6.04 lattice constants a.
The concentration of disc centres is 0.023 and thus smaller than the critical concentration
cc = 0.028 of the percolation limit of the spins. This small system is therefore percolating
and illustrates clearly the characteristic connections between the spins. The conducting areas
do not possess a perfect circular shape due to the coarse discretization.

To achieve reasonable statistics for determining the percolation threshold much larger
systems (604 × 604 sites) have been investigated, and for each disc concentration c the
percolation properties have been averaged over 500 different initial conditions. All chains
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Figure 3. Néel temperatures of doped La2−xSrxCuO4. Solid line: experimental values [15].
Circles: Monte Carlo simulation of antiferromagnetic Ising system for d/a = 6.04. Full circles
are calculated by extrapolations of the order parameter functions f (m(T )) to zero. Open circles
are determined using the Tm averages of the cv, χkBT and ξ -peak maxima (figures 4, 5 and 6,
definitions in the text). The vertical line at c = x = 0.04 denotes the insulator–conductor transition.

of random numbers have been created by using a shift-register sequence random number
generator [6]. They differ from each other for all new disc concentrations c as well as for
all new temperatures T used by the Monte Carlo simulations. Because the critical disc
concentrations cc have shown dependences on d/(Na), simulations with d/(Na) = 0.01,
0.0142 and 0.02 are used for extrapolating cc for d/(Na) = 0. The concentration cc =
x = 0.028 of the doping Sr atoms in LASCO is smaller for percolation of the magnetic
sites than the concentration cc = x = 0.04 for the insulator–conductor transition. This
concentration is in agreement at least qualitatively (see figure 3) to the phase diagram of
high-Tc superconductors [15]. The reduction of TN and the disappearance of the Néel states
are due to the cut-off of magnetic interactions by nonmagnetic discs and not by vanishing
percolation of magnetic regions as it was proposed [16] for explaining muon spin relaxation
experiments.

We go back to the snapshot of a small system (151 × 151 sites) plotted in figure 2 with
a disc concentration of 0.023. This is slightly less than 0.028 where antiferromagnetism
vanishes, in order to present a stable percolation cluster. The distribution of discs and
magnetic sites is rather inhomogeneous. There are large clusters of white discs enclosing
magnetic sites being insulated from the percolation cluster. These insulated sites (plotted with
small crosses) can change their Néel states faster and are not considered for the evaluation of
the magnetic order parameter. They contribute, however, to spin glass properties. Due to the
large inhomogeneities, Heisenberg systems of sizes large enough for reasonable statistics are
very hard to simulate, and Ising spin systems have been used instead. The antiferromagnetic
sites at the borders against the discs (see figure 2) have lost their interaction with one, two
or three other sites. It becomes thus easier to reverse the spin directions by thermal
fluctuations.

In order to obtain reasonable statistics on the values of thermodynamic properties, each
property of one disc concentration and one temperature was averaged over 80 distributions
of the nonmagnetic circles, generated with different random number chains [6]. The system
size being used here was 302 × 302 sites. Each new configuration started with all magnetic
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spins pointing up. After an ageing time of na MC steps/spin all thermodynamic properties are
averaged over na MC steps/spin. The smallest na used is 5000. Further na are chosen in steps
so that they are twice the older ones until they reach 40 000. For temperatures close to the
Néel temperature the specific heat and the susceptibility are evaluated by an extrapolation of
na to ∞ with �1/cv,�1/χ and �1/ξ assumed proportional to 1/na . The Néel temperatures
are not easy to estimate due to finite size effects. In the infinitely large systems the coefficients
χ0 for the susceptibilities χ with χ = χ0(|(T −TN)|/TN)−γ are much larger for T > TN than
for T < TN . For finite systems the heights of the susceptibility peaks reach therefore their
maxima at temperatures Tm > TN . By identifying the Néel temperatures with Tm the critical
exponents for the susceptibilities determined from log–log plots are different for T > TN than
for T < TN . For infinitely large pure systems, all points of the function

f (m(T )) = 1 − ln(
√

2 + 1)

ln(1 + {1 + [1 − m(T )8]1/2}1/2) − 1
4 ln[1 − m(T )8]

, (1)

the inversion of Yang’s [17] exact formula, lie on a straight line calculated with the order
parameters m(T ) of the pure two-dimensional Ising model. Applying equation (1) and fitting
all points with not too small values by straight lines, the Néel temperatures TN are determined
as the interaction of these lines with the zero value [18]. It can be argued that this method may
not be consistent with possible changes of the critical exponents [19, 20]. But other authors
[18, 21–23] have shown that the critical exponents do not change so that this extrapolation
is justified. It has been shown in the calculations for an earlier publication [18] that by
determining TN from equation (1) as explained above the critical exponents are the same for
T > TN and T < TN . The Néel temperatures and the magnetic percolation limit are lowered
for doped systems as plotted in figure 3. This figure shows furthermore that the extrapolations
are closer to the experimental values [15] than Tm. The relative statistical uncertainties of
TN for low concentrations of nonmagnetic sites are of the order of 0.5% and close to the
percolation limit of the order of 1.0%.

The specific heat functions cv evaluated by considering energy fluctuations are plotted in
figure 4. With increasing concentration c of dopant atoms very broad peaks appear. Their
temperature dependences resemble theoretical results of systems with an infinite extension
in one direction and finite free borders in the other direction [24]. This means that the free
borders around the connecting discs act like the free borders in the theoretical calculations.
Due to the close correspondence between the + signs, circles or triangles up (computations)
and dashed, dash-dotted or dotted lines (theory [24] 32 × ∞, 16 × ∞ or 8 × ∞) the average
land-bridge width between the white clusters (as shown in figure 2) is in the order of 32, 16
or 8 lattice constants for a concentration c of 0.004, 0.007 or 0.014, respectively. The largest
peak elevations for concentrations c close to cc occur for temperatures larger than TN . The
Néel temperature is also shown for pure systems with finite sizes in figure 4 [25]. The large
peak widths increasing with doping are traced back to the growing length of the free borders
at the conducting circles, to the loss of translational invariance and to the random distribution
of the dopants. Because cuprates are granular [26] there exist no such large size crystallites
for which cv may diverge. Furthermore, small grain sizes do not allow an unlimited growth
of spectral densities. The peak broadening and the tiny peak heights presented in this figure
persist therefore in doped cuprates.

A similar behaviour can also be observed in the isothermal staggered susceptibility
diverging in a pure infinitely large system close to TN with the critical exponent γ = 1.75.
In figure 5 the theoretical curve is calculated according to [27]. Our results are evaluated
using order parameter fluctuations. For an easy comparison for simulations of smaller and
larger dopant concentrations the susceptibility is plotted on a logarithmic scale. As for the
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Figure 4. Calculated temperature dependence of the specific heat for a Sr concentration x = c of
0.001 79 (crosses), 0.003 67 (+ signs), 0.007 76 (circles), 0.0124 (triangles up), 0.0177 (squares),
0.0207 (diamonds) and 0.0239 (triangles down). The thin full lines are guide for the eyes. The
relative uncertainties due to statistical fluctuations of the inhomogeneities and the Monte Carlo
processes are of the order of 3% at each point. The remaining antiferromagnetic lattice has a size
of 302 × 302 sites (lattice constant a), covered with nonmagnetic discs of diameter 6.04a. Arrows
denote the effective Néel temperatures. The thick full line corresponds to the exact specific heat of
the pure system; the dashed, the dashed-dotted and the dotted line to a pure 32 × ∞, 16 × ∞ and
an 8 × ∞ lattice [24]. The dashed double-dotted line corresponds to calculations [25] of a system
of 64 × 64 sites.
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Figure 5. Calculated temperature dependence of the staggered susceptibility χkBT for a Sr
concentration x = c of 0.001 79 (crosses), 0.003 67 (+ signs), 0.007 76 (circles), 0.0124 (triangles
up), 0.0177 (squares), 0.0207 (diamonds) and 0.0239 (triangles down). The thin full lines are guide
for the eyes. The relative uncertainties due to statistical fluctuations of the inhomogeneities and the
Monte Carlo processes are of the order of 6% at each point. The remaining antiferromagnetic lattice
has a size of 302×302 sites (lattice constant a), covered with nonmagnetic discs of diameter 6.04a.
Arrows denote the effective Néel temperatures. The thick full line corresponds to the staggered
susceptibility of an infinitely large pure system [27].

specific heat, a possible peak height increase is also stopped due to the small granular size of
the cuprate grains.
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Figure 6. Calculated temperature dependence of the correlation parameter ξ for a Sr concentration
x = c of 0.001 79 (crosses), 0.003 67 (+ signs), 0.007 76 (circles), 0.0124 (triangles up), 0.0177
(squares), 0.0207 (diamonds) and 0.0239 (triangles down). The thin full lines are guide for the
eyes. The relative uncertainties due to statistical fluctuations of the inhomogeneities and the Monte
Carlo processes are of the order of 10% at each point. The remaining antiferromagnetic lattice has
a size of 256 × 256 sites (lattice constant a), covered with discs of diameter 6.04a. Arrows denote
the effective Néel temperatures. The thick full line corresponds to the ξ of an infinitely large pure
system [27, 28].

A third critical property is the correlation length ξ(c, T ). In order to remove the problem of
the oscillations in the two-point correlation functions due to antiferromagnetic ordering, their
absolute values are considered. ξ(c, T ) is determined by least-squares fits and by applying
known pre-factor functions [27, 28]. The system size is reduced to 256×256 sites for suitable
applications of the fast Fourier transformations. For an easy comparison of differently doped
slopes a logarithmic plot is used. Also here the peaks reach their maxima for slightly larger
temperatures than the effective Néel temperatures (marked by arrows), and the peak widths
become larger for higher impurity concentrations in agreement with the results for diluted
magnets [20].

3. Summary and conclusions

It has been shown that in La2−xSrxCuO4 high-Tc superconductors the Néel temperatures
decrease with increasing doping even when the systems are simulated with Ising instead of
Heisenberg interactions. A system close to the magnetic percolation limit shows insulated
small clusters responsible for the observed spin glass behaviour at low temperatures. The
simulations of the specific heat show that the singularities of the infinite pure systems vanish
for finite doped systems. Also, whereas it may not be excluded that for infinitely large
doped systems the peak heights increase with system sizes, the small granular grain sizes
of the cuprates [26] stop such an increase, so that the peak heights decrease and the peak
widths grow with doping in those materials. A similar behaviour is also visible for the
staggered susceptibility χ and the correlation length ξ . Such a growth of the peak widths has
also been observed in nuclear quadrupole resonance spectra of doped [29] superconducting
La2−xSrxCuO4 (LASCO), in contrast to the very narrow peaks of the pure antiferromagnetic
isolator La2CuO4 [30].
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